GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D2

Paper F

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

D2 Paper F – Marking Guide

1.	(a)	$x_{11} = \begin{cases} 1 & \text{if Alan is assigned to the lawns} \\ 0 & \text{otherwise} \end{cases}$ $x_{12} = \begin{cases} 1 & \text{if Alan is assigned to the hedgerows} \\ 0 & \text{otherwise} \end{cases}$ $x_{13} = \begin{cases} 1 & \text{if Alan is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$ $x_{21} = \begin{cases} 1 & \text{if Beth is assigned to the lawns} \\ 0 & \text{otherwise} \end{cases}$ $x_{22} = \begin{cases} 1 & \text{if Beth is assigned to the hedgerows} \\ 0 & \text{otherwise} \end{cases}$ $x_{23} = \begin{cases} 1 & \text{if Beth is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$ $x_{31} = \begin{cases} 1 & \text{if Colin is assigned to the lawns} \\ 0 & \text{otherwise} \end{cases}$	B2	
	(b)	$x_{32} = \begin{cases} 1 & \text{if Colin is assigned to the hedgerows} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if Colin is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if Colin is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if Colin is assigned to the hedgerows} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if Colin is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if Colin is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$ $x_{33} = \begin{cases} 1 & \text{if Colin is assigned to the flower beds} \\ 0 & \text{otherwise} \end{cases}$	B2	
	<i>(c)</i>	$x_{11} + x_{12} + x_{13} = 1$ Alan has exactly one job $x_{21} + x_{22} + x_{23} = 1$ Beth has exactly one job $x_{31} + x_{32} + x_{33} = 1$ Colin has exactly one job $x_{11} + x_{21} + x_{31} = 1$ lawns are done by one gardener $x_{12} + x_{22} + x_{32} = 1$ hedgerows are done by one gardener $x_{13} + x_{23} + x_{33} = 1$ flower beds are done by one gardener	M1 A1	
		$x_{ij} \ge 0$ for all i, j reference to balance	B1	(7)

2.

he should play A, F, I and K

Stage	Previous tournament	Current tournament	Value	
1	G	J K L	2 4* 1	
	Н	J K L	3* 2 2	
	I	J K L	2 5* 3	M1 A1
2	D	G H I	min(5, 4) = 4* min(3, 3) = 3 min(3, 5) = 3	
	E	G H I	min(3, 4) = 3 min(5, 3) = 3 min(6, 5) = 5*	
	F	G H I	min(3, 4) = 3 min(6, 3) = 3 min(5, 5) = 5*	M1 A2
3	A	D E F	min(6, 4) = 4 min(3, 5) = 3 min(7, 5) = 5*	
	В	D E F	min(5, 4) = 4 min(5, 5) = 5* min(4, 5) = 4	
	С	D E F	min(7, 4) = 4 min(5, 5) = 5* min(5, 5) = 5*	M1 A1
4	None	A B C	min(5, 5) = 5* min(3, 5) = 3 min(3, 5) = 3	A1

(10)

M1 A1

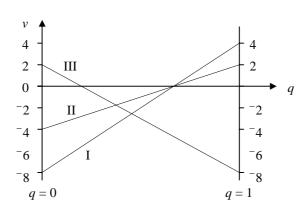
3.	reducing re	row min. 5 20 12 18 5 6 18 15 16 6 4 21 9 15 4 5 16 11 13 5 rows gives: 0 15 7 13 0 12 9 10 0 17 5 11 0 11 6 8	M1 A1	
	reducing c	0 11 5 8 columns gives: 0 4 2 5		
		0 4 2 5 0 1 4 2 0 6 0 3 (N.B. a different choice of lines will lead to the same final assignment)	A1	
		1······	B1	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	
	4 lines req	quired to cover all zeros so allocation is possible	B1	
	Betty revie Carlos rev	eviews a film iews a musical views a ballet eviews a concert	M1 A1	
	total cost =	= 5 + 18 + 9 + 13 = £45	A1	(10)

4. (a)

		В		row
		I	II	minimum
	I	4	-8	-8
A	II	2	-4	⁻ 4
	III	-8	2	-8
column maximum		4	2	

M1 A1

max (row min) = -4min (col max) = 2max (row min) ≠ min (col max) : no saddle point


B1

(b) let B play strategies I and II with proportions q and (1 - q)expected loss for B against each of A's strategies:

A I
$$4q - 8(1 - q) = 12q - 8$$

A II $2q - 4(1 - q) = 6q - 4$
A III $8q + 2(1 - q) = 2 - 10q$

M1 A1

giving

B2

it is not worth player A considering strategy I

for optimal strategy 6q - 4 = 2 - 10q

$$\therefore 16q = 6, \ q = \frac{3}{8}$$

 \therefore B should play I $\frac{3}{8}$ of time and II $\frac{5}{8}$ of time

M1 A1

(c) let A play strategies II and III with proportions p and (1 - p)expected payoff to A against each of B's strategies:

B I
$$2p - 8(1 - p) = 10p - 8$$

B II $-4p + 2(1 - p) = 2 - 6p$

$$^{-}4p + 2(1-p) = 2 - 6p$$

M1 A1

for optimal strategy 10p - 8 = 2 - 6p

$$\therefore 16p = 10, \ p = \frac{5}{8}$$

 \therefore A should play I never, II $\frac{5}{8}$ of time and III $\frac{3}{8}$ of time

M1 A1

(d) value of game =
$$(6 \times \frac{3}{8}) - 4 = -1\frac{3}{4}$$

(15) M1 A1

5. (*a*) add dummy

	S_1	S_2	S_3	Available
W_1	40	5		45
W_2		18	22	40
Dummy			15	15
Required	40	23	37	

M1 A1

M1

(b) taking
$$R_1 = 0$$
, $R_1 + K_1 = 8$ $\therefore K_1 = 8$ $R_1 + K_2 = 7$ $\therefore K_2 = 7$ $R_2 + K_2 = 10$ $\therefore R_2 = 3$ $R_2 + K_3 = 11$ $\therefore K_3 = 8$ M1 A2 $R_3 + K_3 = 0$ $\therefore R_3 = -8$

	$K_1 = 8$	$K_2 = 7$	$K_3 = 8$
$R_1 = 0$	0	0	(11
$R_2 = 3$	9	0	0
$R_3 = -8$	0	0	0

improvement indices, $I_{ij} = C_{ij} - R_i - K_j$

$$I_{13} = 11 - 0 - 8 = 3$$

$$I_{21} = 9 - 3 - 8 = ^{-}2$$

$$I_{31} = 0 - (^{-}8) - 8 = 0$$

$$I_{32} = 0 - (^{-}8) - 7 = 1$$

M1 A1

(c) applying algorithm

	S_1	S_2	S_3
W_1	$40 - \theta$	$5 + \theta$	
W_2	θ	$18 - \theta$	22
Dummy			15

M1

let $\theta = 18$, giving

	S_1	S_2	S_3
W_1	22	23	
W_2	18		22
Dummy			15

A1

M1 A1

taking
$$R_1 = 0$$
, $R_1 + K_1 = 8$ $\therefore K_1 = 8$ $R_1 + K_2 = 7$ $\therefore K_2 = 7$ $R_2 + K_1 = 9$ $\therefore R_2 = 1$ $R_2 + K_3 = 11$ $\therefore K_3 = 10$

	$K_1 = 8$	$K_2 = 7$	$K_3 = 10$
$R_1 = 0$	0	0	(11
$R_2 = 1$	0	(10	0
$R_3 = -10$	0	0	(0)

$$I_{13} = 11 - 0 - 10 = 1$$

$$I_{22} = 10 - 1 - 7 = 2$$

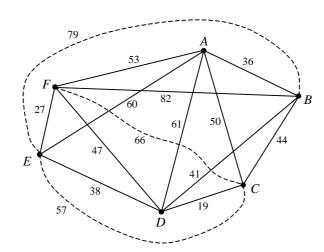
$$I_{31} = 0 - (^{-}10) - 8 = 2$$

$$I_{32} = 0 - (^{-}10) - 7 = 3$$

M1 A1

all improvement indices are non-negative ∴ pattern is optimal

B1


22 rolls from W_1 to S_1 , 23 rolls from W_1 to S_2 , 18 rolls from W_2 to S_1 ,

 \mathbf{J}_1 ,

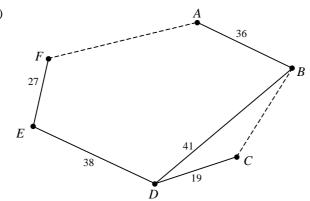
22 rolls from W_2 to S_3 , S_3 still requires 15 rolls

A1 (16)

6. (a)

add BE - 79, CE - 57, CF - 66

M1 A2


M1 A1

(b) AB (36), BD (41), DC (19), CE (57), EF (27), FA (53) tour: ABDCEFA

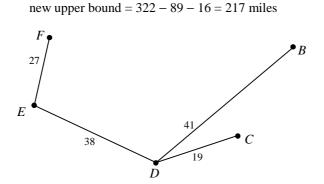
upper bound = 36 + 41 + 19 + 57 + 27 + 53 = 233 miles

A1

(c) (i)

M1 A1

upper bound = $2 \times \text{weight of MST}$


$$= 2 \times (36 + 41 + 19 + 38 + 27) = 2 \times 161 = 322$$
 miles

M1 A1

(ii) use AF saving 36 + 41 + 38 + 27 - 53 = 89use BC saving 41 + 19 - 44 = 16

M1 A1 A1

(*d*)

B1

lower bound = weight of MST + two edges of least weight from A

= (41 + 19 + 38 + 27) + 36 + 50 = 211 miles

M1 A1

(*e*) $211 \le d \le 217$

B1 (17)

Total (75)

Performance Record – D2 Paper F

Question no.	1	2	3	4	5	6	Total
Topic(s)	allocation, formulate lin. prog.	dynamic prog., maximin.	allocation	game, graphical method	transport., dummy, n-w corner, stepping- stone	TSP, nearest neighbour, shortcuts	
Marks	7	10	10	15	16	17	75
Student							